Let be an elliptic pseudo-differential operator of order on a closed manifold of dimension , self-ajdoint with respect to some positive smooth density . Then, the spectrum of is made up of a sequence of eigenvalues whose corresponding (orthogonal) eigenfunctions are . Fix and define the following integral kernel on
We derive asymptotic formulae near the diagonal for the kernels when with fixed . For , is the kernel of the spectral projector of on the energy levels , studied by Hörmander in [11]. In the present work we build on Hörmander’s result to study the kernels for fixed. If , uniformly in , and, at distance around the diagonal, the rescaled leading term behaves like the Fourier transform of an explicit function of the symbol of . If , under some explicit generic condition on the principal symbol of , which holds if is a differential operator, the integral kernel has a logarithmic divergence near the diagonal smoothed at scale , so that on the diagonal it is pointwise of order . Our results also hold when is an elliptic differential operator on a compact open subset of and Dirichlet boundary conditions are imposed on the .
Accepted:
Published online:
DOI: 10.5802/afst.1699
Alejandro Rivera 1
@article{AFST_2022_6_31_2_423_0, author = {Alejandro Rivera}, title = {Weighted local {Weyl} laws for elliptic operators}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {423--490}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 31}, number = {2}, year = {2022}, doi = {10.5802/afst.1699}, zbl = {07549945}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1699/} }
TY - JOUR AU - Alejandro Rivera TI - Weighted local Weyl laws for elliptic operators JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2022 SP - 423 EP - 490 VL - 31 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1699/ DO - 10.5802/afst.1699 LA - en ID - AFST_2022_6_31_2_423_0 ER -
%0 Journal Article %A Alejandro Rivera %T Weighted local Weyl laws for elliptic operators %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2022 %P 423-490 %V 31 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1699/ %R 10.5802/afst.1699 %G en %F AFST_2022_6_31_2_423_0
Alejandro Rivera. Weighted local Weyl laws for elliptic operators. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 2, pp. 423-490. doi : 10.5802/afst.1699. https://afst.centre-mersenne.org/articles/10.5802/afst.1699/
[1] Volume des ensembles nodaux des fonctions propres du laplacien, Séminaire de Théorie Spectrale et Géométrie, Année 1984–1985 (Séminaire de Théorie Spectrale et Géométrie, Chambéry-Grenoble), Volume 3, Univ. de Grenoble I, Inst. Fourier, 1985, p. IV.1-IV.9 | DOI | Numdam | MR | Zbl
[2] Scaling limit for the kernel of the spectral projector and remainder estimates in the pointwise Weyl law., Anal. PDE, Volume 8 (2015) no. 7, pp. 1707-1731 | DOI | MR | Zbl
[3] C-infinity scaling asyptotics for the spectral function of the Laplacian, J. Geom. Anal., Volume 28 (2018) no. 1, pp. 111-122 | DOI | Zbl
[4] Topology and nesting of the zero set components of monochromatic random waves (2016) (https://arxiv.org/abs/1701.00034)
[5] Statistical mechanics of lattice systems. A concrete mathematical introduction., Cambridge University Press, 2018, xix+622 pages | Zbl
[6] Universal components of random nodal sets., Commun. Math. Phys., Volume 347 (2016) no. 3, pp. 777-797 | DOI | MR | Zbl
[7] Betti numbers of random nodal sets of elliptic pseudo-differential operators, Asian J. Math., Volume 21 (2017) no. 5, pp. 811-840 | DOI | MR | Zbl
[8] Generalized functions. Vol. 1: Properties and operations., AMS Chelsea Publishing, 2016, xvii+423 pages (reprint of the 1964 original published by Academic Press) | Zbl
[9] Stable mappings and their singularities, Graduate Texts in Mathematics, 14, Springer, 1973, x+209 pages | DOI | MR
[10] Nodal sets of random eigenfunctions for the isotropic harmonic oscillator, Int. Math. Res. Not., Volume 2015 (2015) no. 13, pp. 4813-4839 | DOI | MR | Zbl
[11] The spectral function of an elliptic operator, Acta Math., Volume 121 (1968), pp. 193-218 | DOI | MR | Zbl
[12] The analysis of linear partial differential operators. I: Distribution Theory and Fourier Analysis, Classics in Mathematics, Springer, 2003, xi+440 pages (reprint of the second ed.) | DOI
[13] The analysis of linear partial differential operators. III: Pseudo-differential operators, Classics in Mathematics, Springer, 2007, viii+525 pages (reprint of the 1994 edition) | DOI | MR
[14] The analysis of linear partial differential operators. IV: Fourier integral operators, Springer, 2009, vii+352 pages | DOI | Zbl
[15] Expected volume and Euler characteristic of random submanifolds, J. Funct. Anal., Volume 270 (2016) no. 8, pp. 3047-3110 | DOI | MR | Zbl
[16] Non-homogeneous boundary value problems and applications. Vol. I, Grundlehren der Mathematischen Wissenschaften, 181, Springer, 1972, xvi+357 pages (translated from the French by P. Kenneth) | MR
[17] On the volume elements on a manifold, Trans. Am. Math. Soc., Volume 120 (1965), pp. 286-294 | DOI | MR | Zbl
[18] On the number of nodal domains of random spherical harmonics, Am. J. Math., Volume 131 (2009) no. 5, pp. 1337-1357 | DOI | MR | Zbl
[19] Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions, Zh. Mat. Fiz. Anal. Geom., Volume 12 (2016) no. 3, pp. 205-278 | DOI | MR | Zbl
[20] Equidistribution of the conormal cycle of random nodal sets, J. Eur. Math. Soc., Volume 20 (2018) no. 12, pp. 3017-3071 | DOI | MR | Zbl
[21] Lie groups. An approach through invariants and representations, Universitext, Springer, 2007, xxii+596 pages | Zbl
[22] Hole probability for nodal sets of the cut-off Gaussian free field, Adv. Math., Volume 319 (2017), pp. 1-39 | DOI | MR | Zbl
[23] The asymptotic distribution of eigenvalues of partial differential operators, Translations of Mathematical Monographs, 155, American Mathematical Society, 1997, xiv+354 pages (translated from the Russian manuscript by the authors) | MR
[24] Topologies of nodal sets of random band limited functions, Advances in the theory of automorphic forms and their -functions. Workshop in honor of James Cogdell’s 60th birthday, Erwin Schrödinger Institute (ESI), University of Vienna, Vienna, Austria, October 16–25, 2013 (Contemporary Mathematics), Volume 664, American Mathematical Society, 2016, pp. 351-365 | DOI | MR | Zbl
[25] Complex powers of elliptic pseudodifferential operators, Integral Equations Oper. Theory, Volume 9 (1986), pp. 337-354 | DOI | MR | Zbl
[26] Complex powers of an elliptic operator, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966), American Mathematical Society, 1967, pp. 288-307 | DOI | MR | Zbl
[27] Gaussian free fields for mathematicians, Probab. Theory Relat. Fields, Volume 139 (2007) no. 3-4, pp. 521-541 | DOI | MR | Zbl
[28] Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, 1993, xiii+695 pages (with the assistance of Timothy S. Murphy) | Zbl
[29] Two-term asymptotic behavior of the spectrum of a boundary value problem in interior reflection of general form, Funkts. Anal. Prilozh., Volume 18 (1984) no. 4, p. 1-13, 96 | MR
[30] Real and complex zeros of Riemannian random waves, Spectral analysis in geometry and number theory (Contemporary Mathematics), Volume 484, American Mathematical Society, 2009, pp. 321-342 | DOI | MR | Zbl
Cited by Sources: