We provide supplements and open problems related to structure theorems for maximal rationally connected fibrations of certain positively curved projective varieties, including smooth projective varieties with semi-positive holomorphic sectional curvature, pseudo-effective tangent bundle, and nef anti-canonical divisor.
Nous fournissons des suppléments et des problèmes ouverts liés aux théorèmes de structure pour les fibrations maximales rationnellement connectées de certaines variétés projectives à courbure positive, y compris les variétés projectives lisses avec une courbure de section holomorphe semi-positive, un faisceau tangent pseudo-efficace et un diviseur anticanonique nef.
Keywords: Rational curves, Maximal rationally connected fibrations, Albanese maps, Structure theorems, Holomorphic sectional curvatures, Pseudo-effective tangent bundles, Nef anti-canonical divisors, klt pairs.
Shin-ichi Matsumura 1
@article{AFST_2022_6_31_3_1011_0, author = {Shin-ichi Matsumura}, title = {Open problems on structure of positively curved projective varieties}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1011--1029}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 31}, number = {3}, year = {2022}, doi = {10.5802/afst.1712}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1712/} }
TY - JOUR AU - Shin-ichi Matsumura TI - Open problems on structure of positively curved projective varieties JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2022 SP - 1011 EP - 1029 VL - 31 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1712/ DO - 10.5802/afst.1712 LA - en ID - AFST_2022_6_31_3_1011_0 ER -
%0 Journal Article %A Shin-ichi Matsumura %T Open problems on structure of positively curved projective varieties %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2022 %P 1011-1029 %V 31 %N 3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1712/ %R 10.5802/afst.1712 %G en %F AFST_2022_6_31_3_1011_0
Shin-ichi Matsumura. Open problems on structure of positively curved projective varieties. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 3, pp. 1011-1029. doi : 10.5802/afst.1712. https://afst.centre-mersenne.org/articles/10.5802/afst.1712/
[1] On projectivized vector bundles and positive holomorphic sectional curvature, Proc. Am. Math. Soc., Volume 146 (2018) no. 7, pp. 2877-2882 | DOI | MR | Zbl
[2] On positivity and base loci of vector bundles, Eur. J. Math., Volume 1 (2015) no. 2, pp. 229-249 | DOI | MR | Zbl
[3] Curvature of vector bundles associated to holomorphic fibrations, Ann. Math., Volume 169 (2009) no. 2, pp. 531-560 | DOI | MR | Zbl
[4] Bergman kernels and the pseudoeffectivity of relative canonical divisors, Duke Math. J., Volume 145 (2008) no. 2, pp. 341-378 | DOI | Zbl
[5] Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 1, pp. 45-76 | DOI | Numdam | MR | Zbl
[6] The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebr. Geom., Volume 22 (2013) no. 2, pp. 201-248 | DOI | Zbl
[7] Connexité rationnelle des variétés de Fano, Ann. Sci. Éc. Norm. Supér., Volume 25 (1992) no. 5, pp. 539-545 | DOI | Zbl
[8] Orbifolds, special varieties and classification theory, Ann. Inst. Fourier, Volume 54 (2004) no. 3, pp. 499-630 | DOI | Numdam | MR | Zbl
[9] Orbifold slope rational connectedness (2017) (https://arxiv.org/abs/1607.07829v2)
[10] Projective klt pairs with nef anti-canonical divisor, Algebr. Geom., Volume 8 (2021) no. 4, pp. 430-464 | DOI | MR | Zbl
[11] Rationally connected manifolds and semipositivity of the Ricci curvature, Recent advances in algebraic geometry (London Mathematical Society Lecture Note Series), Volume 417, Cambridge University Press, 2014, pp. 71-91 | Zbl
[12] Albanese maps of projective manifolds with nef anticanonical divisors, Ann. Sci. Éc. Norm. Supér., Volume 52 (2019) no. 5, pp. 1137-1154 | DOI | MR | Zbl
[13] A general extension theorem for cohomology classes on non reduced analytic subspaces, Sci. China, Math., Volume 60 (2017) no. 6, pp. 949-962 | MR | Zbl
[14] A decomposition theorem for projective manifolds with nef anticanonical bundle, J. Algebr. Geom., Volume 28 (2019) no. 3, pp. 567-597 | MR | Zbl
[15] Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. Math., Volume 144 (1996) no. 1, pp. 189-237 | DOI | MR | Zbl
[16] Compact complex manifolds with numerically effective tangent bundles, Complex Manifolds, Volume 3 (1994) no. 2, pp. 295-345 | MR | Zbl
[17] Quasi-negative holomorphic sectional curvature and positivity of the canonical divisor, J. Differ. Geom., Volume 111 (2019) no. 2, pp. 303-314 | Zbl
[18] A decomposition theorem for singular spaces with trivial canonical class of dimension at most five, Invent. Math., Volume 211 (2018) no. 1, pp. 245-296 | DOI | MR | Zbl
[19] Asymptotic invariants of base loci, Ann. Inst. Fourier, Volume 56 (2006) no. 6, pp. 1701-1734 | Numdam | MR | Zbl
[20] Restricted volumes and base loci of linear series, Am. J. Math., Volume 131 (2009) no. 3, pp. 607-651 | DOI | MR | Zbl
[21] Nef anti-canonical divisors and rationally connected fibrations, Compos. Math., Volume 155 (2019) no. 7, pp. 1444-1456 | DOI | MR | Zbl
[22] On asymptotic base loci of relative anti-canonical divisors of algebraic fiber spaces (2005) (https://arxiv.org/abs/2005.04566v1)
[23] Seshadri constants for vector bundles, J. Pure Appl. Algebra, Volume 225 (2021) no. 4, 106559, 35 pages | MR | Zbl
[24] Families of rationally connected varieties, J. Am. Math. Soc., Volume 16 (2003) no. 1, pp. 57-67 | DOI | MR | Zbl
[25] Klt varieties with trivial canonical class: holonomy, differential forms, and fundamental groups, Geom. Topol., Volume 23 (2019) no. 4, pp. 2051-2124 | DOI | MR | Zbl
[26] Singular spaces with trivial canonical class, Minimal models and extremal rays (Kyoto, 2011) (Advanced Studies in Pure Mathematics), Volume 70, Mathematical Society of Japan, 2016, pp. 67-113 | DOI | MR | Zbl
[27] On Shokurov’s rational connectedness conjecture, Duke Math. J., Volume 138 (2007) no. 1, pp. 119-136 | MR | Zbl
[28] Algebraic fiber spaces over abelian varieties: around a recent theorem by Cao and Pǎun, Local and global methods in algebraic geometry (Contemporary Mathematics), Volume 712, American Mathematical Society, 2018, pp. 143-195 | Zbl
[29] Reduction of manifolds with semi-negative holomorphic sectional curvature, Math. Ann., Volume 372 (2018) no. 3-4, pp. 951-962 | DOI | MR | Zbl
[30] On projective Kähler manifolds of partially positive curvature and rational connectedness, Doc. Math., Volume 25 (2020), pp. 219-238 | Zbl
[31] On the curvature of rational surfaces, Differential geometry (Stanford Univ., Stanford, 1973) (Proceedings of Symposia in Pure Mathematics), Volume 27 part 2, American Mathematical Society, 1973, pp. 65-80 | Zbl
[32] Uniruled varieties with split tangent bundle, Math. Z., Volume 256 (2007) no. 3, pp. 465-479 | DOI | MR | Zbl
[33] Examples of Fano manifolds with non-pseudoeffective tangent bundle (2020) (https://arxiv.org/abs/2003.09476v1)
[34] Algebraic integrability of foliations with numerically trivial canonical divisor, Invent. Math., Volume 216 (2019) no. 2, pp. 395-419 | DOI | Zbl
[35] On projective manifolds with pseudo-effective tangent bundle (2021) (to appear in J. Inst. Math. Jussieu, https://doi.org/10.1017/S1474748020000754) | DOI
[36] On compact Kähler manifolds of nonnegative bisectional curvature I and II, Acta Math., Volume 147 (1981) no. 1-2, pp. 51-70 | DOI | Zbl
[37] Rationally connected varieties, J. Algebr. Geom., Volume 1 (1992) no. 3, pp. 429-448 | MR | Zbl
[38] Asymptotic cohomology vanishing and a converse to the Andreotti-Grauert theorem on surfaces, Ann. Inst. Fourier, Volume 63 (2013) no. 6, pp. 2199-2221 | DOI | Numdam | MR | Zbl
[39] On projective manifolds with semi-positive holomorphic sectional curvature (2018) (https://arxiv.org/abs/1811.04182v1, to appear in Am. J. Math.)
[40] On the image of MRC fibrations of projective manifolds with semi-positive holomorphic sectional curvature, Pure Appl. Math. Q., Volume 16 (2020) no. 5, pp. 1443-1463 | MR | Zbl
[41] The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature, J. Differ. Geom., Volume 27 (1988) no. 2, pp. 179-214 | Zbl
[42] Projective manifolds with ample tangent bundles, Ann. Math., Volume 110 (1979) no. 3, pp. 593-606 | DOI | MR | Zbl
[43] Zariski-decomposition and abundance, MSJ Memoirs, 14, Mathematical Society of Japan, 2004, xiv+277 pages
[44] Quelques aspects de la positivité du fibré tangent des variétés projectives complexes, Ph. D. Thesis, Université Joseph-Fourier (France) (2010) (https://tel.archives-ouvertes.fr/tel-00552308)
[45] Sur le groupe fondamental des variétés kählériennes compactes à classe de Ricci numériquement effective, C. R. Acad. Sci. Paris, Volume 324 (1997) no. 11, pp. 1249-1254 | DOI | MR | Zbl
[46] Positivity of twisted relative pluricanonical bundles and their direct images, J. Algebr. Geom., Volume 27 (2018) no. 2, pp. 211-272 | DOI | MR | Zbl
[47] Compact Kähler manifolds of positive bisectional curvature, Invent. Math., Volume 59 (1980) no. 2, pp. 189-204 | Zbl
[48] An extension of a theorem of Wu-Yau, J. Differ. Geom., Volume 107 (2017) no. 3, pp. 573-579 | MR | Zbl
[49] Structure of projective varieties with nef anticanonical divisor: the case of log terminal singularities (2020) (https://arxiv.org/abs/2005.05782v2)
[50] Negative holomorphic curvature and positive canonical divisor, Invent. Math., Volume 204 (2016) no. 2, pp. 595-604 | Zbl
[51] RC-positivity, rational connectedness and Yau’s conjecture, Camb. J. Math., Volume 6 (2018) no. 2, pp. 183-212 | DOI | MR | Zbl
[52] A partial converse to the Andreotti-Grauert theorem, Compos. Math., Volume 155 (2019) no. 1, pp. 89-99 | DOI | MR | Zbl
[53] RC-positive metrics on rationally connected manifolds, Forum Math. Sigma, Volume 8 (2020), e53, 19 pages | MR | Zbl
[54] Problem section, Seminar on Differential Geometry (Annals of Mathematics Studies), Volume 102, Princeton University Press, 1982, pp. 669-706 | MR | Zbl
[55] On projective manifolds with nef anticanonical bundles, J. Reine Angew. Math., Volume 478 (1996), pp. 57-60 | MR | Zbl
[56] On projective varieties with nef anticanonical divisors, Math. Ann., Volume 332 (2005) no. 3, pp. 697-703 | DOI | MR | Zbl
Cited by Sources: