logo AFST
Résolution de l’équation Au+Bu=fA est linéaire et B dérive d’un potentiel convexe
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 5, Tome 1 (1979) no. 3, pp. 215-234.
@article{AFST_1979_5_1_3_215_0,
     author = {Coron, Jean-Michel},
     title = {R\'esolution de l'\'equation $Au + Bu = f$ o\`u $A$ est lin\'eaire et $B$ d\'erive d'un potentiel convexe},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {215--234},
     publisher = {Universit\'e Paul Sabatier},
     address = {Toulouse},
     volume = {5e s{\'e}rie, 1},
     number = {3},
     year = {1979},
     doi = {10.5802/afst.537},
     zbl = {0436.47052},
     mrnumber = {568147},
     language = {fr},
     url = {afst.centre-mersenne.org/item/AFST_1979_5_1_3_215_0/}
}
Jean-Michel Coron. Résolution de l’équation $Au + Bu = f$ où $A$ est linéaire et $B$ dérive d’un potentiel convexe. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 5, Tome 1 (1979) no. 3, pp. 215-234. doi : 10.5802/afst.537. https://afst.centre-mersenne.org/item/AFST_1979_5_1_3_215_0/

[1 ] H. Amann. «Saddle points and multiple solutions of differential equations». à paraître. | MR 639741 | Zbl 0414.47042

[2] A. Bahri, H. Brezis. «Periodic solutions of a nonlinear wave equation». à paraître. | Zbl 0438.35044

[3] A. Bahri et J.L. Morel. «Image de la somme de deux opérateurs». C.R. Acad. Sc. Paris 287 (1978) p. 719-722. | MR 515674 | Zbl 0393.47036

[4] M.S. Berger et M. Schechter.«On the solvability of semilinear gradient operator equations». Advances in Math. 25 (1977), pp. 97-132. | MR 500336 | Zbl 0354.47025

[5] H. Brezis et L. Nirenberg. «Characterizations of the ranges of some nonlinear operators and applications to boundary value problems». Annali Sc. Norm. Sup. di Pisa, serie IV, V, (1978) pp. 225-326. | Numdam | MR 513090 | Zbl 0386.47035

[6] H. Brezis et L. Nirenberg. «Forced vibrations for a nonlinear wave equation». Comm. Pure Appl. Math. 31 (1978) pp. 1-30. | MR 470377 | Zbl 0378.35040

[7] H. Brezis et L. Nirenberg. «Image d'une somme d'opérateurs non linéaires et applications» C.R. Acad. Sc. Paris, t. 284 (1977) pp. 1365-1368. | MR 442771 | Zbl 0359.47035

[8] A. Castro et A.C. Lazer. «Applications of a Max Min principle». Rev. Colombiana de Mat., 10 (1976) pp. 141-149. | MR 501089 | Zbl 0356.35073

[9] F.H. Clarke. «Periodic solutions to Hamiltonian inclusions». à paraître. | Zbl 0461.34030

[10] F.H. Clarke et I. Ekeland. «Hamiltonian trajectories having prescribed minimal period». Comm. Pure Appl. Math. | MR 562546 | Zbl 0403.70016

[11] I. Ekeland. «Periodic solutions of Hamilton's equations and a theorem of P. Rabinowitz». J. Diff. Eq. | MR 555325 | Zbl 0446.70019

[12] A. Lazer, E. Landesman et D. Meyers. «On saddle point problems in the calculus of variations, the Ritz algorithm, and monotone convergence». J. Math. Anal. Appl. 53 (1975) pp. 594-614. | MR 420389 | Zbl 0354.35004

[13] P.H. Rabinowitz. «A variational method for finding periodic solutions of differential equations». MRC Report 1854 (May 1978). | MR 513821

[14] P.H. Rabinowitz. «Free vibrations for a semi linear wave equation». Comm. Pure. Appl. Math., 31 (1978) pp. 31-68. | MR 470378 | Zbl 0341.35051

[15] P.H. Rabinowitz. «Periodic solutions of Hamiltonian systems». Comm. Pure. Appl. Math., 31 (1978) pp. 157-184. | MR 467823 | Zbl 0358.70014