We prove a characterisation of sets with finite perimeter and functions in terms of the short time behaviour of the heat semigroup in . For sets with smooth boundary a more precise result is shown.
On prouve une caractérisation des ensembles avec périmètre fini et des fonctions à variation bornée en termes du comportement du semi-groupe de la chaleur dans au voisinage de . On prouve aussi un résultat plus précis pour les ensembles avec frontière assez régulière.
Michele Miranda 1; Diego Pallara 1; Fabio Paronetto 1; Marc Preunkert 2
@article{AFST_2007_6_16_1_125_0, author = {Michele Miranda and Diego Pallara and Fabio Paronetto and Marc Preunkert}, title = {Short-time heat flow and functions of bounded variation in $\mathbf{R}^N$}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {125--145}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 16}, number = {1}, year = {2007}, doi = {10.5802/afst.1142}, mrnumber = {2325595}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1142/} }
TY - JOUR AU - Michele Miranda AU - Diego Pallara AU - Fabio Paronetto AU - Marc Preunkert TI - Short-time heat flow and functions of bounded variation in $\mathbf{R}^N$ JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2007 SP - 125 EP - 145 VL - 16 IS - 1 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1142/ DO - 10.5802/afst.1142 LA - en ID - AFST_2007_6_16_1_125_0 ER -
%0 Journal Article %A Michele Miranda %A Diego Pallara %A Fabio Paronetto %A Marc Preunkert %T Short-time heat flow and functions of bounded variation in $\mathbf{R}^N$ %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2007 %P 125-145 %V 16 %N 1 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1142/ %R 10.5802/afst.1142 %G en %F AFST_2007_6_16_1_125_0
Michele Miranda; Diego Pallara; Fabio Paronetto; Marc Preunkert. Short-time heat flow and functions of bounded variation in $\mathbf{R}^N$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 16 (2007) no. 1, pp. 125-145. doi : 10.5802/afst.1142. https://afst.centre-mersenne.org/articles/10.5802/afst.1142/
[1] L. Ambrosio.— Transport equation and Cauchy problem for vector fields, Invent. Math. 158, p. 227-260 (2004). | MR | Zbl
[2] L. Ambrosio, N. Fusco, D. Pallara.— Functions of Bounded Variation and Free Discontinuity problems, Oxford U. P., 2000. | MR | Zbl
[3] H. Brézis.— How to recognize constant functions. Connections with Sobolev spaces,Russian Math. Surveys 57, p. 693-708 (2002). | MR | Zbl
[4] J. Dávila.— On an open question about functions of bounded variation,Calc. Var. 15, p. 519-527 (2002). | MR | Zbl
[5] E. De Giorgi.— Su una teoria generale della misura -dimensionale in uno spazio ad dimensioni,Ann. Mat. Pura Appl. (4) 36, p. 191-213 (1954). | MR | Zbl
[6] E. De Giorgi.— Nuovi teoremi relativi alle misure -dimensionali in uno spazio ad dimensioni, Ric. di Mat.4, p. 95–113 (1955). | MR | Zbl
[7] P. Gilkey, M. van den Berg.— Heat content asymptotics of a Riemannian manifold with boundary, J. Funct. Anal. 120, p. 48-71 (1994). | MR | Zbl
[8] M. Ledoux.— Semigroup proofs of the isoperimetric inequality in Euclidean and Gauss space, Bull. Sci. Math. 118, p. 485-510 (1994). | MR | Zbl
[9] E.H. Lieb, M. Loss.— Analysis, Second edition, Amer. Math. Soc., 2001 | MR | Zbl
[10] M. Miranda (Jr), D. Pallara, F. Paronetto, M. Preunkert.— Heat Semigroup and Functions on Riemannian Manifolds, forthcoming.
[11] K. Pietruska-Paluba.— Heat kernels on metric spaces and a characterisation of constant functions, Manuscripta Math. 115 , p. 389–399 (2004). | MR | Zbl
[12] M. Preunkert.— A semigroup version of the isoperimetric inequality, Semigroup Forum 68, p. 233-245 (2004). | MR | Zbl
[13] M. H. Taibleson.— On the theory of Lipschitz spaces of distributions on Euclidean -spaces I, J. Math. Mech. 13, p. 407-479 (1964). | MR | Zbl
[14] H. Triebel.— Interpolation theory, function spaces, differential operators, North-Holland 1978. | MR | Zbl
[15] J. Wloka.— Partial Differential Equations, Cambridge U. P., 1987. | MR | Zbl
Cited by Sources: