In this paper we clarify the relationship between ribbon surfaces of Legendrian graphs and quasipositive diagrams by using certain fence diagrams. As an application, we give an alternative proof of a theorem concerning a relationship between quasipositive fiber surfaces and contact structures on . We also answer a question of L. Rudolph concerning moves of quasipositive diagrams.
Nous étudions ici la relation entre les surfaces de ruban associées aux graphs legendriens et les diagrammes quasi-positifs. Comme application, nous donnons une preuve élémentaire qu’une surface fibrée est quasi-positive, si et seulement si elle porte la structure de contact standard dans . Nous répondons aussi à une question de L. Rudolph concernant les mouvements des surfaces quasi-positives
@article{AFST_2009_6_18_2_285_0, author = {Sebastian Baader and Masaharu Ishikawa}, title = {Legendrian graphs and quasipositive diagrams}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {285--305}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 18}, number = {2}, year = {2009}, doi = {10.5802/afst.1207}, mrnumber = {2562830}, zbl = {1206.57005}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1207/} }
TY - JOUR AU - Sebastian Baader AU - Masaharu Ishikawa TI - Legendrian graphs and quasipositive diagrams JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2009 SP - 285 EP - 305 VL - 18 IS - 2 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1207/ DO - 10.5802/afst.1207 LA - en ID - AFST_2009_6_18_2_285_0 ER -
%0 Journal Article %A Sebastian Baader %A Masaharu Ishikawa %T Legendrian graphs and quasipositive diagrams %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2009 %P 285-305 %V 18 %N 2 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1207/ %R 10.5802/afst.1207 %G en %F AFST_2009_6_18_2_285_0
Sebastian Baader; Masaharu Ishikawa. Legendrian graphs and quasipositive diagrams. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 18 (2009) no. 2, pp. 285-305. doi : 10.5802/afst.1207. https://afst.centre-mersenne.org/articles/10.5802/afst.1207/
[1] Akbulut (S.), Ozbagci (B.).— Lefschetz fibrations on compact Stein surfaces, Geometry & Topology 5, p. 319-334 (2001). | MR | Zbl
[2] Chekanov (Y.).— Differential algebra of Legendrian links, Invent. Math. 150, p. 441-483 (2002). | MR | Zbl
[3] Eliashberg (Y.), Fraser (M.).— Classification of topologically trivial Legendrian knots, in Geometry, topology, and dynamics (Montreal, PQ, 1995), pp. 17-51, CRM Proc. Lecture Notes 15, A.M.S., Providence, RI, (1998). | MR | Zbl
[4] Etnyre (J.B.).— Lectures on open book decompositions and contact structures, Floer homology, gauge theory, and low-dimensional topology, pp. 103-141, Clay Math. Proc., 5, A.M.S., Providence, RI, 2006. | MR | Zbl
[5] Etnyre (J.B.), Honda (K.).— Knots and contact geometry. I. Torus knots and the figure eight knot, J. Symplectic Geom. 1, p. 63-120 (2001). | MR | Zbl
[6] Giroux (E.).— Convexité en topologie de contact, Comment. Math. Helvetici 66, p. 637-677 (1991). | MR | Zbl
[7] Giroux (E.).— Géométrie de contact : de la dimension trois vers dimensions supérieures, Proceedings of the International Congress of Mathematicians, Vol II (Beijing, 2002), pp.405-414, Higher Ed. Press, Beijing, (2002). | MR | Zbl
[8] Gompf (R.E.).— Handlebody construction of Stein surfaces, Ann. of Math. 148, p. 619-693 (1998). | MR | Zbl
[9] Goodman (N.).— Contact structures and open books, Ph. D thesis, UT Austin, (2003).
[10] Harer (J.).— How to construct all fibered knots and links, Topology 21, p. 263-280 (1982). | MR | Zbl
[11] Hedden (M.).— Notions of positivity and the Ozsváth-Szabó concordance invariant, to appear in J. Knot Theory Ramifications, available at: arXiv.math.GT/0509499. | MR
[12] Hedden (M.).— Some remarks on cabling, contact structures, and complex curves, to appear in Proc. Gökova Geom. Topol. Conference, 2007, available at: arXiv.math.GT/0804.4327.
[13] Ng (L.L.).— Computable Legendrian invariants, Topology 42 (2003), no. 1, 55-82. | MR | Zbl
[14] D. Rolfsen, Knots and links, Mathematics Lecture Series 7, Publish or Perish, Inc., Berkeley, Calif., (1976). | MR | Zbl
[15] Rudolph (L.).— Quasipositive plumbing (Constructions of quasipositive knots and links, V), Proc. A.M.S. 126, p. 257-267 (1998). | MR | Zbl
[16] Światkowski (J.).— On the isotopy of Legendrian knots, Ann. Glob. Anal. Geom. 10, p. 195-207 (1992). | MR | Zbl
[17] Torisu (I.).— Convex contact structures and fibered links in 3-manifolds, Int. Math. Res. Not. 9, p. 441-454 (2000). | MR | Zbl
Cited by Sources: