In parameter slices of quadratic rational functions, we identify arcs represented by matings of quadratic polynomials. These arcs are on the boundaries of hyperbolic components.
Dans des tranches de l’espace des paramètres de fractions rationnelles de degré 2, nous identifions des arcs représentés par des accouplements de polynômes quadratiques. Ces arcs sont contenus dans le bord des composantes hyperboliques.
@article{AFST_2012_6_21_S5_877_0, author = {Inna Mashanova and Vladlen Timorin}, title = {Captures, matings and regluings}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {877--906}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 21}, number = {S5}, year = {2012}, doi = {10.5802/afst.1356}, mrnumber = {3088261}, zbl = {06167095}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1356/} }
TY - JOUR AU - Inna Mashanova AU - Vladlen Timorin TI - Captures, matings and regluings JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2012 SP - 877 EP - 906 VL - 21 IS - S5 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1356/ DO - 10.5802/afst.1356 LA - en ID - AFST_2012_6_21_S5_877_0 ER -
%0 Journal Article %A Inna Mashanova %A Vladlen Timorin %T Captures, matings and regluings %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2012 %P 877-906 %V 21 %N S5 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1356/ %R 10.5802/afst.1356 %G en %F AFST_2012_6_21_S5_877_0
Inna Mashanova; Vladlen Timorin. Captures, matings and regluings. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 21 (2012) no. S5, pp. 877-906. doi : 10.5802/afst.1356. https://afst.centre-mersenne.org/articles/10.5802/afst.1356/
[1] Aspenberg (M.), Yampolsky (M.).— “Mating non-renormalizable quadratic polynomials”, Commun. Math. Phys., 287, p. 1-40 (2009). | MR | Zbl
[2] Douady (A.) and Hubbard (J.).— “A proof of Thurston’s topological characterization of rational functions”, Acta Math. 171, p. 263-297 (1993). | MR | Zbl
[4] McMullen (C.).— “Automorphisms of rational maps”, In “Holomorphic Functions and Moduli I”, p. 31-60, Springer, (1988). | MR | Zbl
[5] Moore (R.L.).— “On the foundations of plane analysis situs”, Transactions of the AMS, 17, p. 131-164 (1916). | MR
[6] Moore (R.L.).— “Concerning upper-semicontinuous collections of continua”, Transactions of the AMS, 27, Vol. 4, p. 416-428 (1925). | MR
[7] Mañe (R.), Sud (P.), Sullivan (D.).— “On the dynamics of rational maps”, Ann. Sci. École Norm. Sup. (4) 16, no. 2, p. 193-217 (1983). | Numdam | MR | Zbl
[8] Milnor (J.).— “Geometry and Dynamics of Quadratic Rational Maps” Experimental Math. 2 p. 37-83 (1993). | MR | Zbl
[9] Milnor (J.).— “Periodic orbits, externals rays and the Mandelbrot set: an expository account”. Géométrie complexe et systèmes dynamiques (Orsay, 1995). Astérisque No. 261, p. 277-333 (2000). | MR | Zbl
[10] Milnor (J.).— “Local connectivity of Julia sets: expository lectures”, in “The Mandelbrot set, Theme and Variations,” LMS Lecture Note Series 274, Cambr. U. Press, p. 67-116 (2000). | MR | Zbl
[11] Pilgrim (K.).— “Rational maps whose Fatou components are Jordan domains”, Ergodic Theory and Dynamical Systems, 16, p. 1323-1343 (1996). | MR | Zbl
[12] Rees (M.).— “Components of degree two hyperbolic rational maps” Invent. Math. 100, p. 357-382 (1990). | MR | Zbl
[13] Rees (M.).— “A partial description of the Parameter Space of Rational Maps of Degree Two: Part 1” Acta Math. 168, 11-87 (1992). | MR | Zbl
[14] Rees (M.).— “A Fundamental Domain for ”, Mém. Soc. Math. Fr. (N.S.) No. 121 (2010). | Numdam | MR | Zbl
[15] Sullivan (D.).— “ Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains”. Ann. of Math. (2) 122, No. 3, p. 401-418 (1985). | MR | Zbl
[16] Tan (L.).— “Matings of quadratic polynomials”, Erg. Th. and Dyn. Sys. 12 p. 589-620 (1992). | MR | Zbl
[17] Thurston (W.).— “Geometry and dynamics of rational functions”, in “Complex dynamics: families and friends”, D. Schleicher (Ed.) (2009) | MR
[18] Timorin (V.).— “Topological regluing of rational functions”, Inventiones Math., 179, Issue 3, p. 461-506 (2009). | MR | Zbl
[19] Wittner (B.).— “On the bifurcation loci of rational maps of degree two”, PhD Thesis, Cornell University (1988). | MR
Cited by Sources: